Management and Restoration to Promote **Biodiversity Conservation and Climate Resilience**

Christopher Neill

A Human-Caused Biodiversity Crisis

"Our results signal an urgent need to address the ongoing threats of habitat loss, agricultural intensification, coastal disturbance, and direct anthropogenic mortality, all exacerbated by climate change." —Rosenberg et al. 2019

A Human-Caused Biodiversity Crisis

Patch-Forming Habitats

Patch-forming habitats are terrestrial plant communities that occur in small patches on the landscape, nested within, and often contrasting with, the background matrix of forests and wetlands

Although patch habitats make up only 2% of New England's natural land, and none of them has more than 150,000 acres of total extent, they are hotspots of plant diversity.

Patch-Forming Habitats

Grasslands and heathlands

Freshwater wetlands

Pine barrens

Whittemore et al. in prep

12,254 ha total habitat
1,416 total parcels
Vast majority < 10 ha
Only 7 parcels > 100 ha (6 of those are MA)
We had plant lists for 1,865 ha (15%)
48% owned by non-profit organizations
26% owned by municipalities
22% owned by states

639 plant species
392 native, 247 non-native
60% forbs, 18% graminoids, 22% woody plants
74% perennials
73 state listed species (57 in MA, 34 in NY, 18 in both)
18 additional listed species on NHESP lists
High Floristic Quality Assessment Index

Top Quality Sites (FQAI)				
Manual Corellus State Forest Fire Lanes				
Frances Crane Wildlife Management Area				
Oyster Watcha Grassland				
Sayville Grassland				
Martha's Vineyard Airport				
Smooth Hummocks				
Long Point Wildlife Refuge				
Sandford Ram Pasture				
Quansoo Grassland				
Squam Farm				
Head of Plains				
Katama Airfield				
Nantucket Airport				
Linda Loring Nature Foundation				

Species that occurred on at least 60% of 22 high-quality surveyed sites that contained >10 rare species, arranged from most frequent to least frequent.

						Site
Species	Common Name	Native Status	Fed	NY	MA	Freq.
Achillea millefolium	Common yarrow	I				100
Carex pensylvanica	Pennsylvania sedge	N				100
Schizachyrium scoparium	Little bluestem	Ν				100
Symphyotrichum dumosum	Rice button aster	N				95
Danthonia spicata	Poverty oatgrass	Ν				91
Euthamia caroliniana	Slender goldentop	N				91
Euthamia graminifolia	Flat-top goldentop	Ν				91
Gaylussacia baccata	Black huckleberry	N				91
Morella pensylvanica	Northern bayberry	Ν				91
Quercus ilicifolia	Scrub oak	N				91
Solidago rugosa	Wrinkleleaf goldenrod	Ν				91
Baptisia tinctoria	Horseflyweed	N				86
Helianthemum dumosum (*Crocanthemum dumosum (E.P.						
Bicknell) E.P. Bicknell)	Bushy frostweed	Ν		Т	WL	86
Prunus serotina	Black cherry	N				86
Rumex acetosella	Common sheep sorrel	I				86
Solidago nemoralis	Gray goldenrod	Ν				86

SRANK	State Class	No. of Rare Species
	Northern Atlantic Coastal Plain Heathland & Grassland	91
	Μ	
S1	Sandplain Grassland	64
S1	Sandplain Heathland	58
S1	Calcareous Basin Fen	26
S1	Maritime Juniper Woodland/Shrubland	23
S1	Freshwater Tidal Marsh	17
S2	Pitch Pine - Scrub Oak Community	73
S2	Red Maple - Black Ash - Tamarack Calcareous Seepage Swamp	59
S2	Hickory - Hop Hornbeam Forest/Woodland	54
S2	Scrub Oak Shrubland	51
S2	Calcareous Sloping Fen	48
S2	Red Maple - Black Gum Swamp	46
S2	Coastal Salt Pond Community	45
S2	Calcareous Rocky Summit/Rock Outcrop Community	43
S2	Major-river Floodplain Forest	39
S2	Ridgetop Pitch Pine - Scrub Oak Community	34
S2	Kettlehole Level Bog	31
S2	Maritime Forest/Woodland	29

Collected plant species in 20 x 20 m plots:

- Plots originally surveyed by Motzkin and Foster in 2000
- Presence/absence of all plants (species and the total number)
- Percent cover of each plant
- Stem diameter (DBH) and canopy cover of all trees > 2.5 cm

Reasons for Plant Biodiversity Declines

Coastal erosion

Reasons for Plant Biodiversity Declines

- Coastal erosion
- Inadequate disturbance

Reasons for Plant Biodiversity Declines

- Coastal erosion
- Inadequate disturbance
- White-tailed deer

Reasons for Plant Biodiversity Declines

- Coastal erosion
- "Inadequate" disturbance
- White-tailed deer
- Other reasons

Translating Science into Conservation Action

- Put coastal grasslands and heathlands on your radar
- Inventory biodiversity
- Develop management plans
- Continue to manage with regular disturbance
- Keep good records
- Participate in networks of experiments
- Pursue grants (Mass Wildlife Habitat Management Grants)
- Maximizing carbon storage everywhere will reduce the biodiversity in open habitats

Science Politics & Policy Justice Fossil Fuels Clean Energy

Today's Climate Projects About Us

Inside Climate News

Pulitzer Prize-winning, nonpartisan rep biggest crisis facing our planet.

Politics & Policy

Natural Climate Solutions Could Cancel Out a Fifth of U.S. Emissions, Study Finds

Low-tech, time-tested forest, farm and land management techniques are effective, cheap and carry benefits well beyond tackling climate change.

By Georgina Gustin y November 14, 2018

New York Times October 6, 2016

"Massachusetts today, with the largest number of commodity producers receiving below cost of production returns, is in dire straits."

"Massachusetts also has the lowest yields per acre of the major growing regions due to proportionally larger numbers of acres planted to loweryielding cranberry varieties."

"Exit strategies provide potential options to retire bogs and provide an economic incentive for growers to maintain land for conservation purposes."

Restored lands

Futu	lre	

In Massachusetts

High potential	2,639 acres
Medium potential	4,687 acres
Low potential	6,115 acres

Neill et al. 2023

Neill et al. 2023

Klionsky et al. in press

Juncus canadensis

Cyperus dentatus

Cyperus strigosus

Juncus effusus

Carex lurida

Schoenoplectus pungens

Drosera intermedia

Sisyrinchium atlanticum

Asclepias incarnata

South African Fynbos

Eastern European Grasslands

Translating Science into Conservation Action

- Crated patch habitats of high biodiversity worthy of recognition
- Consider active restoration because of large biodiversity benefits
- Participate in pre- and post-restoration monitoring
- Consider being parts of experiments to test restoration techniques and lower costs

More restoration in the pipeline (~17 projects)!

Upper Coonamessett (Falmouth) Marstons Mills (Barnstable) Stuart (Rochester) South Meadow (Carver) Indian Brook (Plymouth) Century (Wareham) Hinckleys Pond (Harwich) Mill Brook (Freetown) Pinnacle (Plymouth) Holmes (Plymouth) Upper Bass River (Yarmouth) Bayview (Barnstable) Windswept Phase II (Nantucket) Puritan (Bourne) Jacks Marsh (Wareham) Marks Cove (Wareham) Thatcher (Harwich)

Conclusions

Patch habitats are a valuable way of thinking about landscapes

Small patch habitats are disproportionately important for regional biodiversity

We in Southeast MA are blessed with **the** highest diversity patch habitats in the Northeast US

Land trusts can play a key role in understanding responses of patch habitats to land management

Watching patch habitats (and biodiversity) thrive can be one of the most rewarding and fun aspects of the jobs we do